Contaminants in Hudson Bay & Estuaries

Fei Wang, Alex Hare and Gary Stern

ArcticNet-Manitoba Hydro Cold-Region Estuaries Workshop May 28-29,2012

UNIVERSITY of Manitoba

Acknowledgements

Z. Kuzyk R. Macdonald

S. Johannessen

H. Sanei

D. Barber

L. Fishback

ArcticNet >PP5%C%)C%)P7~d%Df%

churchillnorthernstudiescentre

Why Contaminants?

- Long range transport (via air, river, ocean) to the Bay
- Biomagnifying contaminants tend to be heavily enriched in marine mammals, impacting their health as well as the health of Northern People
- > Two types of contaminants studied:

Both are developmental neurotoxins

What We Know (I)

- ▷ [Hg]_T in Hudson Bay marine mammals remain high
- Decreasing trend detected in [Hg_T] in female Arviat beluga muscle tissue from the early 1980s to 2008, probably due to behavioral changes (foraging more in offshore areas due to sea ice recede) (Gaden and Stern, 2010)

What We Know (II)

Mercury depletion events occur during springtime in Churchill, providing a possibility of enhanced atmospheric Hg transport to the marine system, particularly during melting season.

What We Know (III)

Riverine and atmospheric are the major sources of Hg to the Bay
There exists a unique and powerful particle re-suspension "pump"!

Table 2 – Water and sediment fluxes of the Hudson Bay System										
Constituents	Flux									
	Low	High	Best estimate							
Water (km ³ /yr) ^a			- 84 THE							
Riverine	892	948 ^b	940							
Precipitation-Evaporation	10	50	30							
Oceanic										
Arctic (Fury and Hecla Strait)	1300	3200	2200							
Net Atlantic (Hudson Strait)	-3170	-6300	-3170							
Water inputs-outputs			0							
Sediment (10 ⁶ t/yr)										
Riverine ^c	8.2	11.4	10.2							
Atmospheric ^d	0.71	0.77	0.74							
Coastal erosion	18 ^e	27.5 ^f	18 ^e							
Net oceanic ^g	1.000	1.1.000000000	<-1							
Resuspension ^h			120							
Sedimentation ¹	-78	-216	-147							
Sediment inputs-outputs			~0							

What We Know (IV)

Table 3 – Riverine Hg fluxes to the Hudson Bay System											
Rivers	Water discharge ^a	Sediment discharge ^b	Hg concentration (ng/L)			Hg flux (kg/yr)					
	(km ³ /yr)	(10 ⁶ t/yr)	Hg _D	Hgpc	HgT	Hg _D	Hg _P ^c	Hg _T			
HBS Rivers:											
Povungnituq	11.6	_	1.13	0.47	1.6	13	5.5	19			
Kogaluc	4.9	-	1.05	0.22	1.27	5	1.1	6.2			
Nastapoca	7.9	-	-	-	1.23	-	-	10			
Grande Baleine	19.8	0.1 ^d	2.28	0.59	2.87	45	11	57			
Winisk	16.5	0.2 ^d	-	-	2.38	-	-	39			
Hayes	18.6	-	1.83	1.07	2.9	34	20	54			
Nelson	94.2	0.74	1.9	0.33	2.23	179	31	210			
Churchill	20.6	0.18	3.34	0.13	3.47	69	2.7	71			
Baker Lake Outflow	48.5	-	-		0.72	-	-	35			
Sub-total	243							501			
All HBS rivers ^e	940							1940			
Other Arctic Rivers:											
Mackenzie ^f	330	125	2.77	3.68	7.18	530	1640	2170			
Ob ^g	405	16.5	0.56	-		530	820	1350			
Lena ^g	525	17.6	1	-	-	1150	2900	4050			
Yenisei ^g	626	5.9	0.3	-	-	410	310	720			

(Hg_D: dissolved Hg; Hg_P: Particulate Hg; Hg_T: total Hg).

Hare et al., 2008, STOTEN

Nelson and Churchill Rivers are the largest riverine source of Hg to the bay (15% of the riverine total).

What We Know (V)

Conservative behavior of Hg_T

Surface water Hg_T concentrations in the Nelson and Hayes River estuaries

See Poster by Hare et al.!

Very little removal or remobilization of riverine Hg in the estuaries

What We Know (VI)

- Atmospheric deposition of Hg is largely controlled by the particle flux;
- Natural changes in OM composition and dynamics can cause variation in sedimentary [Hg] at least to the same extent as those caused by increasing anthropogenic Hg emissions

Major Gaps (I)

Methylmercury: sources, sinks, dynamics

Major Gaps (II)

Why the Churchill and Nelson Rivers behave differently from other rivers in the region?

Major Gaps (III)

Why do the Churchill and Nelson estuaries not modify riverine Hg input?

Major Gaps (IV)

How will biotic Hg respond to changes in emissions and hydropower development under a changing climate (in the presence of a powerful particle resuspension pump)?

What can we do better?

- Year-round time-series at fixed stations
- Seasonal transects along the estuaries
- Monitoring vs hypothesis-driven research

New Opportunity: Sea-ice Environmental Research Facility (SERF)

