

Characteristics of anemia and iron status and their associations with blood manganese and lead among children aged 3 to 19 years old from four First Nation communities in Québec

Emad Tahir^{1,2}, Pierre Ayotte^{1,2,3}, Matthew Little^{1,2}, Richard E. Bélanger^{1,4}, Michel Lucas^{1,2}, Donna Mergler⁵, Elhadji A. Laouan Sidi², Community of Winneway – Long Point First Nation, Community of Lac Simon, CSSS Tshukuminu Kanani of Nutashkuan, Community of Unamen Shipu, Nancy Gros-Louis McHugh⁶, Mélanie Lemire^{1,2} ¹Nasivvik Research Chair in Ecosystem Approaches to Northern Health, Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec – Université Laval; ²Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada; ³Institut national de santé publique du Québec, QC, Canada; ⁵CINBIOSE, Université du Québec, QC, Canada; ⁶ First Nation of Québec and Labrador Health and Social Services Commission, Wendake, QC, Canada

Introduction

 Canada is among countries with the lowest prevalence of anemia (3%).

• This prevalence is invariably higher among its First Nations, particularly children¹.

• Childhood anemia is associated with growth, developmental, cognitive, psychomotor and immune system impairments.

• In First Nations communities, iron and other micronutrients deficiencies, infections and lead exposure are frequent, and possibly risk factors for iron deficiency (ID) and anemia².

• Higher intake of animal proteins (rich in bioavailable hemeiron), vitamin C (non-heme iron absorption enhancer), fruits and vegetables (rich in vitamins) are considered protective factors against ID and anemia².

• Divalent metals – manganese (Mn), zinc (Zn), cobalt (Co), cadmium (Cd) and lead (Pb) – interact with iron at different levels in human body³.

 ID may upregulates the absorption and concentration of these metals inside human body, possibly increasing their toxicities^{3.}

Study objectives

- Investigate the prevalence, types, and severity of childhood anemia and iron status by study nation, age, and gender
- Examine protective and risk factors associated with anemia and ID
- Study and document the possible associations between blood Mn, Zn, Co, Cd, Pb and iron biomarkers, considering relevant co-variables

Study design

- The study Youth Environment Study (YEH) was conducted among four First Nation communities in Quebec in Québec, Canada (see Figure 1)
 - Two Anishinabe communities (Abitibi-Temiscamingue region)
 - Two Innu communities (North Shore region)
- Transversal study conducted in May-June and Sept-Oct 2015, with 198 participants aged 3 to 19 years

Data collected relevant for the present project:

- Anthropometric measurements
- Blood samples: Hemoglobin (Hb) (*in situ*), inflammatory biomarker (hs-CRP), and iron, Mn, Cd, Pb, Zn, Co biomarkers
- Individual questionnaires:
 - Socio-demographic
 - Food security & lifestyle
 - Food Frequency Questionnaires (FFQ) (traditional food & market foods)
 - Intakes calculated based on FFQ and food composition data

3 to 5

Factor

Market me

Table1: Divalent metals profile								
	Manganese (Mn)	Zinc (Zn)	Cobalt (Co)	Cadmium (Cd)	Lead (Pb)			
Role	Essential trace element and cofactor for many enzymes	Essential trace element, cofactor for many enzymes	Essential trace element entre in vitamin B12 synthesis	Xenobiotic	Xenobiotic			
Source of exposure	Food, airborne, water, mining activities	Food, mining activities, steel smelting	Food, airborne due to metal smelting	Smoking, water ingestion, battery disposal	Old residential paints, hunting activities			
Health effects	Neurobehavioral, memory and movement problem	Hematological, gastrointestinal effects, immunotoxic	Possibly carcinogenic to human	Chronic exposure carcinogenic	Attention, IQ, hematological & neurobehavioral			

Figure 1: Studied First Nations and communities

Results are presented for 193 participants, 5 participants were excluded due of missing data

Red lines refer to WHO reference values for public health significance of anemia ^{5,6} Please note that CHMS coding for ID and anemia is slightly different than in the YEH project

Table 2: Results of the structural equation modeling/factorial analysis for protective and risk factors for Hb and ferritin

	Standardized estimates for Hb (95%CI)	Standardized estimates for ferritin (95%CI)	
fruits	0.13 (-0.38, 0.52)	0.13 (-0.16, 0.44)	
itamin C	0.15 (0.004, 0.16)*	0.15 (0.02, 0.27)*	
arkers	- 0.1 (-0.23, 0.04)	0.12 (0.04, 0.18)*	
ieat	0.07 (-0.17, 0.32)	0.03 (-0.29, 0.36)	
at	0.02 (- 0.34, 0.37)	- 0.02 (-0.62, 0.59)	

* : significant association for combined direct and indirect effects (p < 0.05) • Higher intake of powder juice (fortified with vitamin C) and related vitamin C intake (an iron absorption enhancer) is associated with lower ID and anemia • Models are controlled for household, age, sex, nation, interviewer and body mass index (BMI) and socioeconomic status

Table 3: Divalent metals in YEH by nation and compared to CHMS

Metal	Anishinabe (n=106) Geo mean (range)	Innu (n=84) Geo mean (range)			
Blood Mn (µg/L)	15.33 (11.83, 18.83)	16.17 (12.71, 19.63)			
Plasma Zn (µg/L)	1134.34 (980.38, 1288.30)	1081.87 (935.09, 1228.66)			
Blood Co (µg/L)	0.26 (0.19, 0.33)*	0.18 (0.12, 0.25)			
Blood Cd (µg/L)	0.51 (0.43, 0.58)	0.48 (0.40, 0.56)			
Blood Pb (µg/L)	5.35 (3.51, 7.65)	7.21 (5.07, 9.87)*			
* : significant difference between nation (T-test, p < 0.05)					
 Exclusion of 3 participants based on liver diseases or dysfunctions 					

• Blood Mn is higher and blood Pb is lower than in CHMS (Cycle 2 or 3) (3-19 yrs old)

References

- Canadian Centre for Health Information