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How the cryosphere dynamic affects phytoplankton spring-summer bloom? 66 . \ 66° 06 VO -
To answer this question we proposed a novel methodology using multi satellite . CONERRR » .. B o1 o et AERINEFNI . ¢
missions summarized by the following steps :  @" e - \ o ' faady \ ¥ - “‘\ 0
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I. To detect the sea-ice thermodynamic stages in Hudson Bay System using | 62 - o N 62 | 0 SR\E 1 Mg
active microwave scatterometer (QUIKSCAT) following Howell et al. [2006]; o K R . CHINCTERCT SR e R W S N L 56
1. To evaluate the QUIKSCAT-derived sea-ice thermodynamic stages using high 11> . . |
resolution (30 meters) multispectral imagery of Landsat; 58° : — sy : >3 T S N
lii. To combine passive and active microwaves information to establish the [ ? - 1T
chronology of the sea-ice stages : melt, pond and drainage onsets and ice-free  °° A == - H B H H 5
Season, 54° L. w06 | i g a3s12 — || 54° 06 s b SaRlIEc) H i
IvV. To assess the impacts of sea-ice stages variability on phytoplankton blooms at md*onaet o - - | | N S S SN | o | ’ m wn |
the Marginal Sea-lce Zone (MIZ) using satellite-derived chlorophyll-a 52 7). 1 Th 75 1 i | 52° & | L T ain G O i e {6 e o
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concentration (Chl) (GSM - Globcolour Project). - o 85" - .8 _95° 90 |
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Validation of sea-ice stages detected by QuikSCAT using Landsat ETM+7 o o 1(')5 1;0 1;5 S0 1es 0 165 180 05 210 s 30 45 60 75 20
at 91°W 58°N In 2006 offshore the Nelson Rlver
- — ; Pond onset, sea-ice retreat (SIC 10%), and melt duration (days between pond onset and sea-ice retreat) maps. Boxplots of each sea-ice parameters and Chl in the marginal sea-ice zone
s (17 B show how melting stages can influence the magnitude of phytoplanktonic blooms in Hudson Bay System, these relations present substantial inter-annual variability (not showed here).
p/\ y There is a predisposition for marginal sea-ice blooms in areas of early pond onset, and oligotrophy for late pond onset. The earliest pond onset occurs in low Photosynthetically Active
“ % [0, gl Radiation PAR(+0) conditions, generally below 10 HE m~ day-! in March. In contrast, oligotrophic waters (<0.5 mg m-3) are widespread in the pelagic system in case of late pond onset
during the summer solstice in June, when PAR(+0) can be higher than 40 uE m- day-! [Frouin and Pinker, 1995; Laliberté et al., 2016].
N : M Marginal Sea-Ice Zone Blooms | on, oo, Photosynthetic Active Radiation controls on balance
PRSP o o) N = between under-ice and pelagic phytoplankton
e o e W ' e o i o dynamic
66° Eﬁiiﬁ;—rﬂ) WWWM ﬂhﬁmm _ Pond increases considerably the light transmission throughout
i b . s s ek 2 o o the ice-pack [Frey etal., 2011; Arrigo et al., 2014]. It is assumed
64° that pond onset determines the beginning of under-ice production
o o | season. Thus, pond fraction and time of onset can effectively
62° N | control the balance between under-ice and pelagic production
il o throughout the MIZ. This balance also depends on timing in
60° oor| oor| relation to seasonal cycle of PAR(+0) and nutrients availability.
o o H R In case of late melting season, the sea-ice transition to open-
58° o i v s bkt 2 s ol waters will occur simultaneous to the seasonal peak of PAR(+0).
Hudson Bay sea-ice Is generally thinner than in higher Arctic
S ien o JURE 56° A fixed Chl-based threshold of 0.5 mg region (1.3-1.7m; Wang et al., 1994) allowing potentially more
m-3 during the follow 21 days after the light to penetrate In spring time which may trigger massive under
54° sea-ice retreat (SIC 10%) is selected Ice bloo_ms even fjurlng a short tlr_ne period and consequently, a
to detect marginal sea-ice blooms scenario of nutrient depletion might be left t(_) the sub_sequent
52° pelagic system. Then, MIZ goes toward an oligotrophic set up,
[Perrette et al., 2011]. Depths shallow which 1s assumed by low phytoplankton abundancy in upper
£ than 50 m are exclude from analysis to layers and a sub-surface Chl maximum stabilized out of ocean
o B _ o _ _ _ avold sediments, turbid waters and color remote sensor range [Ferland et al., 2011; Ardyna et al.,
(A) QUIKSCAT timeseries of o, (black Ilne), co-polarization ratio HH/VV (red line) applied river plumes 2013]
to detect sea-ice stages using Howell et al. [2005, 2006, 2009] method based on dynamic '
thresholds and sea-ice concentration (SIC) [Comiso, 2000] (blue line). (B) Landsat ETM+7
true-color composite (RGB: bands 3, 2, and 1) in Jun 23, 2006 shows ice floes Interaction Jul-08 . - - . . .
with coastal dynamic in the Nelson river plume, colored dissolved organic carbon results in N Marginal Sea-lce Zone Chlgipinr [mg m™] Pond onset, melt duration and MIZ Bloom
dark-waters. (C) True-color (RGB: bands 3, 2, and 1) and (D) thermal (RGB: bands 6, 5, and Jn23 T N » Scatterplot of pond onset, melt duration and MIZ Chl
4) composites _equallzed tp highlight sea-Ice patterns. (_kaSCAT _reaches good performance N _2006 (color scale) [Perrette et al., 2011] in 2006. These
to detect sea-ice stages In HBS. Du_rmg the consolidated sea-Ice stage,_ leads _an(_JI_Ion_g 08 RS ks o o oarameters are clustered by K-means and represented by
fractures are widespread (Feb 15) which produces corner-reflection and high variability In 3 : .
QuIkSCAT timeseries. Also, these features release latent heat stoked in the upper ocean layer May-24 T & 02 Symbo_ls which are colored according Chl Value_s, cluster
to atmosphere as highlighted by Landsat thermal band 6 (10.40-12.50 nm). The transition | | % 5 centroids (black symbols) are selected by ascending ord_er
toward melt and pond onset is marked by an increase of sea-ice fractures or leads and é May-09 1> a8 of Chl .4.n #l < #2 < #2 < #4 < #5). The spatial
decrease of ice floe size (April 4). The melting process is intensified by ice floes dispersion. | | £ | 5 58 distribution of each cluster I1s showed on map to point
Around April 20, the pond onset was detected by QuikSCAT, while Landsat shows Apet T L CA T " ,E o specific patterns of sea-ice stages influence on pelagic
significant changes In the sea-Ice floe size ranging from 1to 5 k_m. Finally, even after open .| RN m i I £ o bloom in Hudson Bay System. High phytoplankton
water onset detectec! by the QU|I§SCAT algorlthm (~June 20) sea-ice floes remains as seen be ; g giﬁzg ﬁé % ” B BREREND. ¥, : abundance is more frequent for early pond onset (cluster
Landsat corresponding to a sea ice concentration of ~50% according to passive microwaves > Cluster #3| -/ WZQO@Clusters % o #5). Melt duration and pond onset have a well-marked
(blue line, right axis). T o Cluster #£4| = 11" 2004 M- : e _ ANdp _ _
Sea-Ice thermodynamic stages using Landsat imagery in whole Hudson Bay System: & Chwter AN Inverse linear relation, long (short) melt duration 1is
» Atotal of 12 positions were validated in distinct oceanographic domains of Hudson Bays S 0 i @ 50 o triggered by an early (late) pond onset.
System between 2006 and 2008; Melt duration [ At = ts1c 10% - tpond Onser] - days
« Hight frequency of fractures and leads during the consolidate winter stage and divergence - 0 _
and convergence of ice floes in advanced melting stages are significant sources of errors of eneral aiscussion PUNE -
Howell et a%. [2005, 2006 2007] methodology; o X Phytoplankton phenology in polar region can be Highlights and Cor_mlus'o_n _ _ - _ _
- Pond onset [Howell et al. 2005, 2006 2007] marks a significantly increase of lead largely influenced by sea-ice thermodynamic stages at © Our novel multi-satellite approach iIs promisor to evaluate how sea-ice time shifts can impact the balance
frequency and triggers the most notable Process of Changing INn the sea-ice thermodynamic; the end of the winter and In Spring. Melt, pOnd and between Under'lce and pe|agIC phyt0p|ankt0n dynamIC,
« Pond coverage can be less expressive than lead frequency in control the light incoming drainage onsets, for example, are good indicators of | o Melting process in areas of thin sea-ice like Hudson Bay System is ruled fracturing process. Thus, light
beneath the sea-ice pack; the light transmission through the ice, which Is a key incoming beneath sea-ice pack can trigger bloom even before pond occurrence, forced by widespread sea-ice
- Concerning the sea-ice impact on light attenuation, the time duration between pond onset | component controlling the phytoplankton bloom fractures and leads:
and SIC of 10% Is more suitable to assess the sea-ice stage Impact on phytoplankton initiation. The timing of physical processes are center | = . ) 5 melting duration and pond onset have a well-marked inverse linear relation;
dynamic in the marginal sea-ice zone in Hudson Bay System. to understand the phytoplankton phenology. Events e . % .
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