
Dynamic interactions with snow and sea-ice, and extreme seasonal variations make solar energy an elusive and potentially harmful resource to harvest for diatom microalgae of the Arctic Ocean. The

annual shift of environmental gradients, from early spring sea-ice covered to summer ice-free waters, triggers an explosive increase in biomass through the succession of many sympagic and planktonic

species, which share diverse ecophysiological features. Climate change is inducing a decline in Arctic sea-ice extent and a longer open water season, which severely modifies Arctic diatoms’ light

environment1 and could diminish their productivity and nutritive quality in the trophic chain2. It is therefore important to comprehend Arctic diatoms light response strategy with regards to their

ecophysiological diversity if we are to improve our understanding of their seasonal succession and of primary and secondary production trends in the Arctic Ocean, under present and future light conditions.

Introduction

To define how the light response strategy of Arctic

diatoms is influence by:

(1) The light environment of their different ecological

niches and;

(2) Their ecophysiological diversity.

Objectives Light response strategy features

KE : Light saturation coefficient.

NPQ: Ability to dissipate light energy absorbed in excess

(non-photochemical quenching)5
.

NPQS: Arctic diatoms’ distinctive ability to sustain NPQ

in prolonged dark periods6
.

XC: Kinetics of the xanthophyll pigments cycle which

activate NPQ.

LHCx: Quantity of proteins that modulate the amplitude

of NPQ according to environmental conditions7.

Photosystem II (PSII) repair cycle which counters

photinhibition8
.

Materials and methods

Lab growth of 8 Arctic diatoms strains representative

of their eco(physio)logical diversity over seasonal

species succession.

(1) Determination of the growth rate at 6 irradiances:

from light limiting to over-saturating.

(2) Analysis of photoprotection induction kinetics with

short light stresses (NPQ and XC) under two growth

irradiances: limiting and saturating.

(3) Response to a prolonged light stress (2h) followed

by a relaxation period at low light (1h) (NPQ, XC, PSII

repair cycle, LHCx proteins).

This study will provide a first opportunity to link Arctic

diatoms’ high eco(physio)logical diversity and unique

photophysiology. Data will eventually:

(1) Allow comparison with in situ measurements on

sympagic and planktonic Arctic communities.

(2) Feed ecological modelling to improve our

understanding of how diatom diversity could shift and

impact the Arctic Ocean in the future.

Figure 1: Schematic representation of the average Arctic diatom seasonal succession through the transition of 4 growth periods with distinct light
environments. Ambient irradiance seasonal mean is controlled mainly by snow and ice thickness and structure, solar angle, photoperiod and depth
adaptations, fast light fluctuations are mainly controlled by snow melting, ice break-up, vertical mixing and depth adaptations. The growth forms
and respective eco(physio)logical features of the different species observed over succession are well known (Table 1) while the differences in their
light response strategies remain poorly documented. Subsurface Chlorophyll Maximum (SCM) (Information from Wassmann and Reigstad 2011)3
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Sympagic
Nitzschia frigida P 435

1 Ice
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and 
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3 3
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Screening of the main light response features of Arctic diatoms 
over seasonal species succession

CROTEAU, Dany (dany.croteau.3@ulaval.ca), J. Larivière, F. Bruyant, M. Babin and J. Lavaud

Takuvik Joint International Laboratory, Université Laval (Canada) - CNRS (France), UMI3376, Département de Biologie, Université Laval, 
Québec, Québec G1V 0A6, Canada.

Table 1: Arctic diatoms strains targeted by this study, their known eco(physio)logical features and life forms. Growth period numbers refer
to Figure 1. In red are designated “model” species of their respective niche and represent the main genera in Arctic waters,
experimentation 3 will only be performed on these species. Growth forms: pennate (P); centric (C). (Information from Poulin et al., 2011)4

Figure 2: Hypothetical schematic representation of the expected relative influence of ambient irradiance seasonal mean and
fast light fluctuations on the main features of the light response strategy of Arctic diatom species according to the light
environment of their ecological niche (Table 2)
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