Distribution and speciation of selenium within Arctic marine ecosystems: a multi-marker approach

Dufour, Francis^{1,2,3}, G. Massé¹, M. Lemire², A. Achouba³, M. Kwan⁴, E. Avard⁴ & P. Ayotte^{2,3} (1) UMI Takuvik, U. Laval; (2) Centre de recherche du CHU de Québec – U. Laval; (3) Centre de toxicologie du Québec, INSPQ; (4) Nunavik Research Centre

Context: Marine organisms are central to Inuit's diet and exhibit many nutritional benefits, including high concentrations of energetic fatty acids (omega-3) and microelements such as selenium (Se). Se is highly abundant in Inuit blood as a unique organic form: selenoneine. This molecule has been recently reported in marine mammals but since the synthesis pathways are not present in these animals: Where does it comes from? **Objectives:** I- Study the distribution of Se, selenoneine and fatty acids into two marine food chains • Analysis of total Se and selenoneine concentrations Fatty acid content • 2- Assess the relative importance of the two primary production pools (i.e. ice algae VS I phytoplankton) as environmental sources of Se and selenoneine < • IP25 (proxy of ice algae) • Stable isotopes (δ 13C, δ 15N) R. saida **8,10** µg/g dry 6,70 µg/g dry 5,22 µg/g C 8,9 % phic 6,56 µg/g C groenlandicus **2,07** µg/g dry

Phytoplankton

Pelagic carbon signature

-24

Conclusions

15

%00

15N

S

10 -

5

- Se in walrus muscle.
- environmental sources of omega-3 fatty acids. As Se and omega-3 fatty acids are important to human I health, country food from the marine environment provide many nutritional benefits. In addition, the

ArcticNet ϷΡϷͽϲͽϽΓͽ ϽΡィσϤͽοΛϳϲ	τλκυνικ	Research Chair in Ecosystem Approaches to Northern Health en.nasivvik.chaire.ulaval.ca	Institut national de santé publique Québec 🖏 🖏	CHU de Québec Université Laval Centre de recherche	LPSS Société Makivik Makivik Corporation

δ¹³C ‰

• Selenium levels are high in walrus muscle and in identification of selenoneine in relatively high clams, but especially low in fish samples. proportions could help counteract methyl-mercury Selenoneine is an important form of Se in the toxicity in Arctic ecosystems. The environmental source marine environment, representing up to 14% of total of Se and selenoneine remains difficult to assess. • The IP25 and $\delta 13C$ results confirm that benthic I Zooplankton, Arctic cod & Sculpin are abundant living organisms are highly linked to ice-associated sinking organic matter. Trophic level does not appear to be a relevant factor in Se distribution, fortifying other results in the literature suggesting no biomagnification.

6,59 μg/g C

